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The effect of dissipation when due to the load of a transmission line coupled to a Josephson junction is
reconsidered and evaluated by means of a simple direct procedure that supplies analytical expressions. The
results are in good agreement with the ones previously reported in the literature. A simple criterion for testing
experimental results is introduced.
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Since the 1980s, several works have been devoted to the
theme of macroscopic quantum tunneling �MQT�. However,
a clear interpretation of the results and of their obtainment
has not always been given. As is well known, the decisive
quantity in determining tunneling behavior is given by the
Euclidean action, in which the contribution due to dissipative
effects plays an important role. The purpose of the present
work is that of once again evaluating this contribution.

With reference to the problem under consideration—an
important case of MQT susceptible to experimental verifica-
tions and applications—the most satisfying work is, in our
opinion, the one by Chakravarty and Schmid �1� in which, by
using a sophisticated and elegant method based on the
Green’s function, results were obtained also in agreement
with the so-called “Leggett’s prescription” �2�. The applica-
tion of this prescription makes it possible to obtain directly
the same results as the method adopted in �1�, thus �appar-
ently� decreasing its importance. This is not completely true,
however, since obtaining the above-mentioned result is not
completely lacking in points that still need to be clarified. To
this end, it is worth recalling that, in a more recent work �3�,
the debated question of the suppression of tunneling being
due to dissipation �4� was reconsidered. The authors showed
that the virtual mixing of excited states induced by dissipa-
tive interactions tends to enhance the tunneling rate in
double-well potentials. More in general, the tunneling effect
depends greatly on the choice of counterterms introduced in
the Lagrangian of the systems considered �2,5�, while the
approach in �1� is lacking in this exigency.

Typically, most of the works dedicated to this subject are
rather complicated �6�. In particular, the work of Ref. �1� is
somewhat hermetic as well as concise. Two other works �7,8�
are devoted to a better understanding of the procedure and
are in agreement with the results of �1�. A drawback in �1� is
represented by the choice of an unusual geometry, with the
junction situated in the middle of an open transmission line:
a more suitable and practical geometry would require the
junction to be put at one end of the said line. Another paper
is dedicated to the same problem �9�, but adopts a different
method, based on Laplace’s transforms. By using the artifice
of halving the bounce time, the results obtained were in sub-
stantial agreement with the previous ones. After due consid-
eration, however, this use did not seem at all satisfactory for

the reason that halving the bounce time in Ref. �9� was
forced by the procedure there adopted, which works in a
temporal semispace. Therefore a different evaluation, based
on a relatively clearer procedure, is presented here. While the
above-mentioned articles �1–3,7,8� are based on functional
integrations, the present approach avoids the use of this
“delicate” instrument while obtaining the same results �10�.

Let us consider an open transmission line coupled to the
junction �see Fig. 1�. The Lagrangian density can be written
in terms of magnetic field storage energy minus electric field
storage energy �even if other determinations are admissible�
�1,5,11�:

1

2
�I2�z,�� −

1

2
�V2�z,�� , �1�

where � and � denote the inductance and capacitance per
unit length, respectively; z is the spatial coordinate, and � is
the real time. The current I and the voltage V at the input of
the line are functions of � and are related by the relation �12�
V / I=−iZ0 cot����, where Z0= �� /��1/2 is the characteristic
impedance of the line and � is the angular frequency com-
ponent of the propagating wave. According to the bounce
formalism, we now replace � with −i��� �1�, so that V / I
=Z0 coth����. By substituting this into �1� the Lagrangian
density of the line, as seen by the junction at z=0, is given by

1

2
�V2����tanh2���� − 1� . �2�

Then, by changing the variable �� into −kz according to the
propagation condition of a pulse V�kz−��� �13� and integrat-
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J J
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FIG. 1. Josephson junction �JJ� coupled to an open transmission
line, where � and � represent the inductance and capacitance per
unit length. The maximum of z will be put equal to L.
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ing, the complete Lagrangian for a line of length L is given
by summing over the ensemble of lines of length 0�z��L,
thus obtaining

L��,L� =
1

2
�V2����

0

L

dz��1 − tanh2�kz��� =
1

2

V2���
�Z0

tanh�kL� ,

�3�

where k=�����1/2 is the wave number, with ����−1/2 being
the wave velocity. Moreover, according to the second Jo-
sephson equation �the line and the junction being coupled at
z=0�, we have V���= ��0 /2���̇���, where �0 is the flux
quantum and �̇��� is the time derivative of the bounce tra-
jectory ����=�B sech2�	� /2�, where �B is the bounce am-
plitude and 	 is the plasma frequency of the junction �9,14�.
After the substitutions Eq. �3� can be written as

L��,�,�0� =
1

2




�
��̇����2�tanh���0�� , �4�

where 
= ��0 /2��2 /Z0 is the “dissipative constant” due to
the load of the transmission line and �0=kL /� is the delay
time of the line. The line, even if considered as ideal without
inherent losses, represents a load for the junction, a load that
is purely resistive, equal to the characteristic impedance Z0
of the line when ��0�1, while it is capacitive, equal to the
reactance ��C�−1, where C=�L is the total capacitance,
when ��0�1 �1�.

To evaluate the variation of the action integral due to the
line, we can follow two different paths. One less accurate
result can be obtained by integrating Eq. �4� in time for a
fixed value of �=	. In this way, we have a result that is only
partially correct �15�. The other way is based on Fourier
transformation and implies integration in frequency, which
supplies more accurate results. According to this last proce-
dure, by taking into account that �V����= ��0 /2������,
where ��� is the Fourier transform of the trajectory �9�, the
variation of the bounce action, due to the line, is given by

�SB =



2
�

−�

�

d������2� tanh���0� . �5�

This result, which is exactly equal to the one in Ref. �1� �see
Eqs. �16� and �20�, there�, has been here obtained by a rela-
tively simpler procedure.

By substituting into �5� the explicit form of ,

��� = �B
2�2
��	

���

	
	csch���

	
	 , �6�

we obtain the following expression for the adimensional
function f =�SB /
�B

2 �16�:

f�	�0� =
8

�3x4�
0

�

d 3 tanh��csch2�x� ,

 = ��0, x =
�

	�0
. �7�

This integral, which represents the solution to our problem,
can be evaluated analytically by adopting an expansion of

tanh���0� in a power series or in a series of exponentials.
The power series turns out to be suitable for small values of
	�0=� /x; a careful examination of the integrand in �7�
shows that the power-series expansion �converging for ��0
�� /2� can be used for 	�0�2. In this case, the well-known
formula �17�

�
0

�

d 2m csch2�x� =
�2m

x2m+1 �B2m� , �8�

where B2m are the Bernoulli numbers, leads to an asymptotic
power series in �1 /x�. Using the known properties of this
kind of series, it is easily found that the behavior of the
function �7� is well described �within a few percent�, for
	�0�1, by the expansion up to the fourth term:

f�	�0� 
 0.267�	�0� − 0.063�	�0�3 + 0.036�	�0�5

− 0.033�	�0�7. �9�

It was more difficult to find an analytical expression in the
opposite limit of large values of 	�0. By using the expansion
of tanh���0� in a series of exponentials we obtain

f�	�0� =
8

�3x4�
0

�

d 3�1 + 2�
n=1

�

�− 1�ne−2n�csch2�x� .

�10�

Here, the first integral in parentheses can be directly evalu-
ated as �17�

�
0

�

d 3 csch2�x� =
1

x4

1

4
��4���3� . �11�

When substituted into �10�, this result supplies the value in
the limit of 	�0→�, that is, f 
0.465, since ��3�
1.202.
As for the subsequent terms in Eq. �10�, the general one is
�performing an evident change of variable�

16

�3 �− 1�n�
0

�

d 3e−2n/x csch2�� �12�

and an integration by parts gives ��=2n /x�

�
0

�

d 3e−� csch2 = �
0

�

d�32 − �3�e−� coth  .

�13�

This integral is known �18� and can be put in the form

g��/2� = 1.5���3,
�

2
	 −

�

2
��4,

�

2
	 , �14�

where ��y ,� /2� is the generalized Riemann’s zeta function
�19�. By substituting this into �10�, we eventually obtain

f�	�0� =
12

�3��3� +
16

�3 �
n=1

�

�− 1�ng�n

x
	 , �15�

which, by using the definition of ��y ,� /2� �19�, can also be
written as
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f�	�0� =
12

�3��3� +
24

�3 �
n=1

�

�
m=1

�
�− 1�nm

�m + n/x�4 �16�

to permit a direct calculation. This equation resolves our
problem for high values of 	�0.

In Fig. 2 the plots of functions given by Eq. �15�, stopped
to n=10, and by Eq. �9� are shown, together with the exact
value of f , obtained by numerical integration �20�. It must be
observed that the series �15� converges for every value of x,
provided that a sufficient number of terms is considered in
the sum. Using the expansion of ��y ,� /2� for large values of
� �21�, it is possible to state that, in order to have an error
less than �, the expansion �15� must include terms up to n

x /�6�. For example, for 	�0=�, stopping to n=4 in �15�,
we obtain f�	�0=��
0.395, which is in good agreement
�within 2%� with the exact value of Eq. �7�.

We have therefore demonstrated that the results obtained
are in agreement with those of Refs. �1,2,7,8�, although they
were obtained here by means of a clearer and simpler proce-
dure. In addition, we note that the geometry adopted, as in
Refs. �7,8�, is a more suitable one for the experimental test-
ing of these systems. To this end, an approximate relation,
based on the shortening of the semiclassical traversal time �S
as being due to dissipative effects �represented in the actual
case by the line load�, was given in Ref. �9�. It can be written
as ��S /�S
�2 /3��SB /SB, where �SB, for 	�0�1, can be
assumed to be given by 0.465
�B

2 , while SB= �8 /15�M	�B
2 ,

with M being the “mass” of the particle given by M
=CJ��0 /2��2 and CJ the capacitance of the junction. After
substitutions, we find that ��S /�S is now given by �22�

��S

�S



0.58

Q
, �17�

where Q=	Z0CJ is the “quality” factor of the system. Ac-
cording to the results and parameter values of Ref. �23�, in
which a tunneling �decoupling� time of 78 ps was measured,
by comparing it with the half period �� /	� in harmonic
approximation of 85 ps �assumed as the semiclassical tunnel-
ing time in the absence of load�, we obtain ��S /�S=7 /85
=8.2%. Considering that in this case, for a sufficiently long
�0 �say, �0
200 ps, while 	=3.7�1010 s−1�, so that 	�0

7.4 and Q=7.2 �Z0=72 	, CJ=2.7 pF�, we obtain
���S /�S�Q=0.59, which is in good agreement with the value
predicted by Eq. �17� �24�.

In conclusion, we have presented a relatively simple and
direct way for evaluating the increment of the bounce action
as being due to the load constituted by a transmission line
coupled to a Josephson junction. This quantity is of crucial
importance for determining tunneling rate. Analytical expres-
sions for the action variation are given in both limits of small
and large values of 	�0. A simple, approximate expression
for testing experimental results is also given.
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